Source code for gs_quant.models.risk_model

"""
Copyright 2019 Goldman Sachs.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied.  See the License for the
specific language governing permissions and limitations
under the License.
"""
import datetime as dt
from enum import Enum, auto
from typing import List, Dict, Tuple, Union
import pandas as pd
import numpy as np
import logging
import pydash
import deprecation

from gs_quant.api.gs.risk_models import GsFactorRiskModelApi, GsRiskModelApi
from gs_quant.base import EnumBase
from gs_quant.errors import MqValueError, MqRequestError
from gs_quant.markets.factor import Factor
from gs_quant.models.risk_model_utils import build_asset_data_map, build_factor_data_map, \
    build_pfp_data_dataframe, get_isc_dataframe, get_covariance_matrix_dataframe, get_closest_date_index, \
    batch_and_upload_partial_data, get_universe_size, batch_and_upload_coverage_data, only_factor_data_is_present, \
    upload_model_data, validate_factors_exist
from gs_quant.target.risk_models import RiskModel as RiskModelBuilder, RiskModelEventType, RiskModelData, \
    RiskModelCalendar, RiskModelDataAssetsRequest as DataAssetsRequest, RiskModelDataMeasure as Measure, \
    RiskModelCoverage as CoverageType, RiskModelUniverseIdentifier as UniverseIdentifier, Entitlements, \
    RiskModelTerm as Term, RiskModelUniverseIdentifierRequest, Factor as RiskModelFactor, RiskModelType


class ReturnFormat(Enum):
    """Alternative format for data to be returned from get_data functions"""
    JSON = auto()
    DATA_FRAME = auto()


class Unit(Enum):
    """Units in which to return a risk model data measure"""
    PERCENT = auto()
    STANDARD_DEVIATION = auto()


class FactorType(EnumBase, Enum):
    """Factor represents a risk factor and Category represents a risk factor category"""

    Factor = 'Factor'
    Category = 'Category'

    def __repr__(self):
        return self.value


[docs]class RiskModel: """ Risk Model Class """
[docs] def __init__(self, id_: str, name: str): self.__id: str = id_ self.__name: str = name
@property def id(self) -> str: """ Get risk model id """ return self.__id @property def name(self) -> str: """ Get risk model name """ return self.__name @name.setter def name(self, name: str): """ Set risk model name """ self.__name = name def __str__(self): return self.id def __repr__(self): s = "{}('{}','{}'".format(self.__class__.__name__, self.id, self.name) s += ")" return s
[docs]class MarqueeRiskModel(RiskModel): """ Marquee Risk Model Class """
[docs] def __init__(self, id_: str, name: str, type_: Union[str, RiskModelType], vendor: str, version: float, coverage: CoverageType, universe_identifier: UniverseIdentifier, term: Term, universe_size: int = None, entitlements: Union[Dict, Entitlements] = None, description: str = None, expected_update_time: dt.time = None): super().__init__(id_, name) self.__type: RiskModelType = type_ if type_ and isinstance(type_, RiskModelType) else RiskModelType(type_) self.__vendor = vendor self.__version = version self.__coverage = coverage self.__universe_identifier = universe_identifier self.__term = term self.__universe_size = universe_size self.__entitlements: Entitlements = entitlements if entitlements and isinstance(entitlements, Entitlements) \ else Entitlements.from_dict(entitlements) if entitlements and isinstance(entitlements, Dict) else None self.__description: str = description self.__expected_update_time = expected_update_time
@property def type(self) -> RiskModelType: """ Get risk model type""" return self.__type @type.setter def type(self, type_: RiskModelType): """ Set risk model type """ self.__type = type_ @property def vendor(self) -> str: """ Get risk model vendor """ return self.__vendor @vendor.setter def vendor(self, vendor): """ Set risk model vendor """ self.__vendor = vendor @property def version(self) -> float: """ Get risk model version """ return self.__version @version.setter def version(self, version: float): """ Set risk model version """ self.__version = version @property def coverage(self) -> CoverageType: """ Get risk model coverage """ return self.__coverage @coverage.setter def coverage(self, coverage: CoverageType): """ Set risk model coverage """ self.__coverage = coverage @property def universe_identifier(self) -> UniverseIdentifier: """ Get risk model universe identifier """ return self.__universe_identifier @property def term(self) -> Term: """ Get risk model term """ return self.__term @term.setter def term(self, term: Term): """ Set risk model term """ self.__term = term @property def description(self) -> str: """ Get risk model description """ return self.__description @description.setter def description(self, description: str): """ Set risk model description """ self.__description = description @property def universe_size(self) -> int: """ Get risk model universe size """ return self.__universe_size @universe_size.setter def universe_size(self, universe_size: int): """ Set risk model universe size """ self.__universe_size = universe_size @property def entitlements(self) -> Entitlements: """ Get risk model entitlements """ return self.__entitlements @entitlements.setter def entitlements(self, entitlements: Union[Entitlements, Dict]): """ Set risk model entitlements """ self.__entitlements = entitlements @property def expected_update_time(self) -> dt.time: """ Get risk model expected update time """ return self.__expected_update_time @expected_update_time.setter def expected_update_time(self, expected_update_time: dt.time): """ Set expected update time """ self.__expected_update_time = expected_update_time
[docs] def delete(self): """ Delete existing risk model object from Marquee """ return GsRiskModelApi.delete_risk_model(self.id)
[docs] def get_dates(self, start_date: dt.date = None, end_date: dt.date = None, event_type: RiskModelEventType = None) \ -> List[dt.date]: """ Get dates between start_date and end_date for which risk model data is present :param start_date: List returned including and after start_date :param end_date: List returned up to and including end_date :param event_type: Which event type to retrieve dates for :return: A list of dates where risk model data is present **Usage** Get all the dates for which risk model data is present over start_date and end_date (inclusive). **Examples** >>> from gs_quant.models.risk_model import FactorRiskModel, RiskModelEventType >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = FactorRiskModel.get("MODEL_ID") >>> dates = model.get_dates(start_date, end_date) **See also** :func:`get_missing_dates` :func:`get_calendar` :func:`get_most_recent_date_from_calendar` """ return [dt.datetime.strptime(date, "%Y-%m-%d").date() for date in GsRiskModelApi.get_risk_model_dates(self.id, start_date, end_date, event_type=event_type)]
[docs] def get_calendar(self, start_date: dt.date = None, end_date: dt.date = None) -> RiskModelCalendar: """ Get risk model calendar for existing risk model between start and end date :param start_date: List returned including and after start_date :param end_date: List returned up to and including end_date :return: RiskModelCalendar for model **Usage** Get the risk model calendar. **Examples** >>> from gs_quant.models.risk_model import FactorRiskModel >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = FactorRiskModel.get("MODEL_ID") >>> model_calendar = model.get_calendar(start_date, end_date) **See also** :func:`get_most_recent_date_from_calendar` :func:`get_dates` :func:`get_missing_dates` """ calendar = GsRiskModelApi.get_risk_model_calendar(self.id) if not start_date and not end_date: return calendar start_idx = get_closest_date_index(start_date, calendar.business_dates, 'after') if start_date else 0 end_idx = get_closest_date_index(end_date, calendar.business_dates, 'before') if end_date else len( calendar.business_dates) return RiskModelCalendar(calendar.business_dates[start_idx:end_idx + 1])
[docs] def upload_calendar(self, calendar: RiskModelCalendar): """ Upload risk model calendar to existing risk model :param calendar: RiskModelCalendar containing list of dates where model data is expected """ return GsRiskModelApi.upload_risk_model_calendar(self.id, calendar)
[docs] def get_missing_dates(self, start_date: dt.date = None, end_date: dt.date = None) -> List[dt.date]: """ Get any dates where data is not published according to expected days returned from the risk model calendar :param start_date: Date to truncate missing dates at :param end_date: Date to truncate missing dates at If no end_date is provided, end_date defaults to T-1 date according to the risk model calendar **Usage** Get dates with missing data between start date and end date. **Examples** >>> from gs_quant.models.risk_model import FactorRiskModel >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = FactorRiskModel.get("MODEL_ID") >>> dates = model.get_missing_dates(start_date, end_date) **See also** :func:`get_dates` :func:`get_calendar` """ posted_dates = self.get_dates() if not start_date: start_date = posted_dates[0] if not end_date: end_date = dt.date.today() - dt.timedelta(days=1) calendar = [dt.datetime.strptime(date, "%Y-%m-%d").date() for date in self.get_calendar( start_date=start_date, end_date=end_date).business_dates] return [date for date in calendar if date not in posted_dates]
[docs] def get_most_recent_date_from_calendar(self) -> dt.date: """ Get T-1 date according to risk model calendar """ yesterday = dt.date.today() - dt.timedelta(1) calendar = self.get_calendar(end_date=yesterday).business_dates return dt.datetime.strptime(calendar[len(calendar) - 1], '%Y-%m-%d').date()
[docs] def save(self): """ Upload current Risk Model object to Marquee """ model = RiskModelBuilder(self.coverage, self.id, self.name, self.term, self.universe_identifier, self.vendor, self.version, type_=self.type, description=self.description, entitlements=self.entitlements, universe_size=self.universe_size, expected_update_time=self.expected_update_time.strftime('%H:%M:%S') if self.expected_update_time else None) try: GsRiskModelApi.create_risk_model(model) except MqRequestError: GsRiskModelApi.update_risk_model(model)
[docs] @classmethod def get(cls, model_id: str): """ Get a risk model from Marquee :param model_id: risk model id corresponding to Marquee Risk Model :return: Risk Model object """ model = GsRiskModelApi.get_risk_model(model_id) return cls.from_target(model)
[docs] def get_asset_universe(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest(RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get asset universe data for existing risk model :param start_date: Start date for data request. Must be equal to end_date if universe array in DataAssetsRequest is empty. :param end_date: End date for data request. Must be equal to start_date if universe array in DataAssetsRequest is empty. :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: Which format to return the results in :return: Risk model universe data in a pandas dataframe or dict **Usage** Get the assets covered by the model between start date and end date. **Examples** >>> from gs_quant.models.risk_model import FactorRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier, ReturnFormat >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> universe = ['GS UN'] >>> model = FactorRiskModel.get("MODEL_ID") >>> asset_universe = model.get_asset_universe(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, universe)) **See also** :func:`get_specific_risk` :func:`get_universe_factor_exposure` :func:`get_total_risk` """ if not assets.universe and not end_date: end_date = start_date results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Asset_Universe], limit_factors=False ).get('results') dates = [dt.datetime.strptime((data.get('date')), '%Y-%m-%d').date() for data in results] universe = [data.get('assetData').get('universe') for data in results] dates_to_universe = dict(zip(dates, universe)) if format == ReturnFormat.DATA_FRAME: return pd.DataFrame.from_dict(dates_to_universe, orient='index').T return dates_to_universe
[docs] def get_factor(self, name: str, start_date: dt.date = None, end_date: dt.date = None) -> Factor: """ Get risk model factor from its name :param name: Factor name associated with risk model :param start_date: Start date of when to search for factor (optional, default to last month) :param end_date: End date of when to search for factor (optional, default to today) :return: Factor object """ name_matches = [f for f in self.get_factor_data(start_date=start_date, end_date=end_date, format=ReturnFormat.JSON) if f['name'] == name] if not name_matches: raise MqValueError(f'Factor with name {name} does not in exist in risk model {self.id}') factor = name_matches.pop() return Factor(risk_model_id=self.id, id_=factor['identifier'], type_=factor['type'], name=factor.get('name'), category=factor.get('factorCategory'), tooltip=factor.get('tooltip'), description=factor.get('description'), glossary_description=factor.get('glossaryDescription'))
[docs] def get_many_factors(self, start_date: dt.date = None, end_date: dt.date = None, factor_names: List[str] = None, factor_ids: List[str] = None, factor_type: FactorType = None) -> List[Factor]: """ Get risk model factors :param start_date: Start date of when to search for factors (optional, default to last month) :param end_date: End date of when to search for factors :param factor_names: The list of names of factors to get. All names must be valid factor names. If both factor_names and factor_ids are empty, all the factors will be returned. :param factor_ids: The list of ids of factors to get. All ids must be valid factor ids. If both factor_names and factor_ids are empty, all the factors will be returned :param factor_type: Whether to return factors or factor categories. If unspecified, all the factors of all types will be returned :return: A list of Factor objects **Usage** Given a list of factor names and/or ids, return the factor objects that represent the factor requested. If no factor names or ids are provided, all the factors will be returned. **Examples** >>> from gs_quant.models.risk_model import FactorRiskModel, FactorType >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = FactorRiskModel.get("MODEL_ID") >>> many_factors = model.get_many_factors(start_date, end_date, factor_names=["factor1", "factor2"], ... factor_type=FactorType.Factor) >>> **See also** :func:`get_factor` :func:`get_factor_data` """ factors_from_model = self.get_factor_data(start_date=start_date, end_date=end_date, factor_type=factor_type, format=ReturnFormat.JSON) name_matches = [] if not factor_names and not factor_ids: name_matches = factors_from_model else: for f in factors_from_model: if factor_names: if f["name"] in factor_names: name_matches.append(f) factor_names.remove(f["name"]) if factor_ids: if f["identifier"] in factor_ids: name_matches.append(f) factor_ids.remove(f["identifier"]) if factor_names or factor_ids: raise MqValueError(f'Factor names: {factor_names} and factor ids: {factor_ids} not in model' f' {self.id} for date range requested') return [Factor(risk_model_id=self.id, id_=f['identifier'], type_=f['type'], name=f.get('name'), category=f.get('factorCategory'), tooltip=f.get('tooltip'), description=f.get('description'), glossary_description=f.get('glossaryDescription')) for f in name_matches]
[docs] def save_factor_metadata(self, factor_metadata: RiskModelFactor): """ Add metadata to a factor in a risk model :param factor_metadata: factor metadata object """ try: GsFactorRiskModelApi.update_risk_model_factor(self.id, factor_metadata) except MqRequestError: GsFactorRiskModelApi.create_risk_model_factor(self.id, factor_metadata)
[docs] def delete_factor_metadata(self, factor_id: str): """ Delete a factor's metadata from a risk model :param factor_id: factor id associated with risk model's factor """ GsFactorRiskModelApi.delete_risk_model_factor(self.id, factor_id)
[docs] def get_factor_data(self, start_date: dt.date = None, end_date: dt.date = None, identifiers: List[str] = None, include_performance_curve: bool = False, category_filter: List[str] = None, factor_type: FactorType = None, format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get factor data for existing risk model :param start_date: Start date for data request :param end_date: End date for data request :param identifiers: List of factor ids associated with risk model :param include_performance_curve: Include the performance curve of the factors :param category_filter: Filter the results to those having one of the specified categories. \ Default is to return all results :param factor_type: The type of factor. :param format: which format to return the results in :return: Risk model factor data **Usage** Get factor data for factors whose ids are specified in identifiers. **Examples** >>> from gs_quant.models.risk_model import FactorRiskModel >>> import datetime as dt >>> >>> model = FactorRiskModel.get("MODEL_ID") >>> factor_data = model.get_factor_data() **See also** :func:`get_many_factors :func:`get_factor_returns_by_name` """ factor_data = GsFactorRiskModelApi.get_risk_model_factor_data( self.id, start_date, end_date, identifiers, include_performance_curve ) if factor_type: factor_data = [factor for factor in factor_data if factor['type'] == factor_type.value] if category_filter: if factor_type == FactorType.Category: print('Category filter is not applicable for the Category FactorType') else: factor_data = [factor for factor in factor_data if factor['factorCategory'] in category_filter] if format == ReturnFormat.DATA_FRAME: factor_data = pd.DataFrame(factor_data) return factor_data
[docs] def get_factor_returns_by_name(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = None, factors: List[str] = [], format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[Dict, pd.DataFrame]: """ Get factor return data for existing risk model keyed by name :param start_date: Start date for data request :param end_date: End date for data request :param assets: DataAssetsRequest object with identifier and list of assets to limit the factors by :param factors: The factors to get factor return data for. If empty, the data for all factors is returned :param format: Which format to return the results in :return: Factor returns by name **Usage** Get factor returns between start date and end date. **Examples** >>> from gs_quant.models.risk_model import FactorRiskModel >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = FactorRiskModel.get("MODEL_ID") >>> factor_returns = model.get_factor_returns_by_name(start_date, end_date) **See also** :func:`get_factor_returns_by_id` :func:`get_factor_data` """ if factors: risk_model_factors = self.get_factor_data(start_date=start_date, end_date=end_date, factor_type=FactorType.Factor, format=ReturnFormat.JSON) factors = validate_factors_exist(factors, risk_model_factors, self.id, 'name') limit_factors = True if assets else False measures = [Measure.Factor_Return, Measure.Factor_Name, Measure.Factor_Id] if assets: measures += [Measure.Universe_Factor_Exposure, Measure.Asset_Universe] results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=measures, limit_factors=limit_factors ).get('results') factor_data = build_factor_data_map(results, 'factorName', 'factorReturn', factors=factors) if format == ReturnFormat.DATA_FRAME: factor_data = pd.DataFrame(factor_data) return factor_data
[docs] def get_factor_returns_by_id(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = None, factors: List[str] = [], format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[Dict, pd.DataFrame]: """ Get factor return data for existing risk model keyed by factor id :param start_date: Start date for data request :param end_date: End date for data request :param assets: DataAssetsRequest object with identifier and list of assets to limit the factors by :param factors: The factors to get factor return data for. If empty, the data for all factors is returned :param format: Which format to return the results in :return: Factor returns by factor id **Usage** Get factor returns between start date and end date. **Examples** >>> from gs_quant.models.risk_model import FactorRiskModel >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = FactorRiskModel.get("MODEL_ID") >>> factor_returns = model.get_factor_returns_by_id(start_date, end_date) **See also** :func:`get_factor_returns_by_name` :func:`get_factor_data` """ if factors: risk_model_factors = self.get_factor_data(start_date=start_date, end_date=end_date, factor_type=FactorType.Factor, format=ReturnFormat.JSON) factors = validate_factors_exist(factors, risk_model_factors, self.id, 'identifier') limit_factors = True if assets else False measures = [Measure.Factor_Return, Measure.Factor_Name, Measure.Factor_Id] if assets: measures += [Measure.Universe_Factor_Exposure, Measure.Asset_Universe] results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=measures, limit_factors=limit_factors ).get('results') factor_data = build_factor_data_map(results, 'factorId', 'factorReturn', factors=factors) if format == ReturnFormat.DATA_FRAME: factor_data = pd.DataFrame(factor_data) return factor_data
[docs] def get_universe_exposure(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest( RiskModelUniverseIdentifierRequest.gsid, []), get_factors_by_name: bool = False, format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get universe factor exposure data for existing risk model :param start_date: Start date for data request :param end_date: End date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param get_factors_by_name: Return results keyed by factor name instead of ID :param format: Which format to return the results in :return: Factor exposure for assets requested **Usage** Given a list of assets, return their exposure to factor between start date and end date. **Examples** >>> from gs_quant.models.risk_model import FactorRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> universe = ['GS UN'] >>> model = FactorRiskModel.get("MODEL_ID") >>> universe_exposure = model.get_universe_exposure(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, universe)) **See also** :func:`get_asset_universe` :func:`get_factor_returns_by_name` :func:`get_covariance_matrix` """ results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Universe_Factor_Exposure, Measure.Asset_Universe], limit_factors=False ).get('results') universe = pydash.get(results, '0.assetData.universe', []) factor_map = {} if get_factors_by_name: model_factors = self.get_factor_data(start_date=start_date, end_date=end_date, format=ReturnFormat.JSON) factor_map = {factor.get('identifier'): factor.get('name') for factor in model_factors} factor_exposure = build_asset_data_map(results, universe, 'factorExposure', factor_map) if format == ReturnFormat.DATA_FRAME: factor_exposure = pd.DataFrame.from_dict( {(i, j): factor_exposure[i][j] for i in factor_exposure.keys() for j in factor_exposure[i].keys()}, orient='index' ) return factor_exposure
[docs] def get_specific_risk(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest(RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get specific risk data for existing risk model :param start_date: Start date for data request :param end_date: End date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: Which format to return the results in :return: Specific risk for assets requested **Usage** Get specific risk data for assets specified in `assets` between `start_date` and `end_date` **Examples** >>> from gs_quant.models.risk_model import MacroRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = FactorRiskModel.get("MODEL_ID") >>> specific_risk = model.get_specific_risk(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, ['GS UN'])) **See also** :func:`get_residual_variance` :func:`get_specific_return` :func:`get_total_risk` """ results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Specific_Risk, Measure.Asset_Universe], limit_factors=False ).get('results') universe = pydash.get(results, '0.assetData.universe', []) specific_risk = build_asset_data_map(results, universe, 'specificRisk', {}) if format == ReturnFormat.DATA_FRAME: specific_risk = pd.DataFrame(specific_risk) return specific_risk
[docs] def get_residual_variance(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest( RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get residual variance data for existing risk model :param start_date: Start date for data request :param end_date: End date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: Which format to return the results in :return: Residual variance for assets requested **Usage** Get residual variance data for assets specified in `assets` between `start_date` and `end_date` **Examples** >>> from gs_quant.models.risk_model import MacroRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = FactorRiskModel.get("MODEL_ID") >>> residual_variance = model.get_residual_variance(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, ['GS UN'])) **See also** :func:`get_total_risk` :func:`get_historical_beta` :func:`get_specific_return` """ results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Residual_Variance, Measure.Asset_Universe], limit_factors=False ).get('results') universe = pydash.get(results, '0.assetData.universe', []) residual_variance = build_asset_data_map(results, universe, 'residualVariance', {}) if format == ReturnFormat.DATA_FRAME: residual_variance = pd.DataFrame(residual_variance) return residual_variance
[docs] def get_data(self, measures: List[Measure], start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest( RiskModelUniverseIdentifierRequest.gsid, []), limit_factors: bool = True) -> Dict: """ Get data for multiple measures for existing risk model :param measures: list of measures for general risk model data request :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param limit_factors: limit factors included in factorData and covariance matrix to only include factors which the input universe has non-zero exposure to :return: risk model data or MqRequestError if query is too large for the service """ try: return GsFactorRiskModelApi.get_risk_model_data( model_id=self.id, start_date=start_date, end_date=end_date, assets=assets, measures=measures, limit_factors=limit_factors ) except MqRequestError as e: if e.status > 499: logging.warning(f"Potential timeout in request for model {self.id}. Consider adding a retry or" f" batching request if error persists") raise MqRequestError(e.status, f"timeout while getting model data between {start_date} and {end_date} " f" for {self.id}, consider batching request") raise e
[docs] def upload_data(self, data: Union[RiskModelData, Dict], max_asset_batch_size: int = 20000): """ Upload risk model data to existing risk model in Marquee :param data: complete or partial risk model data for uploading on given date includes: date, and one or more of: factorData, assetData, covarianceMatrix, issuerSpecificCovariance and factorPortfolios. Look at risk model upload documentation for further information on what data can be grouped together if asset data size is above the max asset batch size :param max_asset_batch_size: size of payload to batch with. Defaults to 20000 assets which works well for models that have factor ids ranging from 1- 3 characters in length. For models with longer factor ids, consider batching with a smaller max asset batch size If upload universe is over max_asset_batch_size, will batch data in chunks of max_asset_batch_size assets This function takes risk model data, and if partial requests are necessary, will upload data by 1. factor data (includes covariance matrix if factor model) 2. asset data in batches of max_asset_batch_size 3. issuer specific covariance data in batches of max_asset_batch_size / 2 due to the structure of this data 4. factor portfolio data in batches of max_asset_batch_size / 2 due to the structure of this data In the case of repeat identifiers on a given data, the repeated data will replace existing data """ data = data.as_dict() if type(data) is RiskModelData else data full_data_present = 'factorData' in data.keys() and 'assetData' in data.keys() only_factor_data_present = only_factor_data_is_present(self.type, data) target_universe_size = 0 if only_factor_data_present else get_universe_size(data) make_partial_request = target_universe_size > max_asset_batch_size or not full_data_present if target_universe_size: logging.info(f'Target universe size for upload: {target_universe_size}') if make_partial_request: batch_and_upload_partial_data(self.id, data, max_asset_batch_size) else: logging.info('Uploading model data in one request') upload_model_data(self.id, data)
[docs] @deprecation.deprecated(deprecated_in="0.9.42", details="Please use upload_data instead") def upload_partial_data(self, data: Union[RiskModelData, dict], final_upload: bool = None): """ Upload partial risk model data to existing risk model in Marquee :param data: partial risk model data for uploading on given date :param final_upload: if this is the last upload for the batched subset of data The models factorData and covarianceMatrix must be uploaded first on given date if repeats in partial upload, newer posted data will replace existing data on upload day """ upload_model_data(self.id, data, partial_upload=True, final_upload=final_upload)
[docs] def upload_asset_coverage_data(self, date: dt.date = None, batch_size: int = 100): """ Upload to the coverage dataset for given risk model and date :param date: Date to upload coverage data for, default date is last date from risk model calendar :param batch_size: Number of assets to upload in one request Posting to the coverage dataset within the last 5 days will enable the risk model to be seen in the Marquee UI dropdown for users with "execute" capabilities """ if not date: date = self.get_dates()[-1] gsid_list = self.get_asset_universe(date, assets=DataAssetsRequest(RiskModelUniverseIdentifierRequest.gsid, []), format=ReturnFormat.JSON).get(date) if not gsid_list: raise MqRequestError(404, f'No asset data found on {date}') batch_and_upload_coverage_data(date, gsid_list, self.id, batch_size)
[docs] @classmethod def from_target(cls, model): uid = model.universe_identifier return MarqueeRiskModel( id_=model.id, name=model.name, coverage=model.coverage if isinstance(model.coverage, CoverageType) else CoverageType(model.coverage), term=model.term if isinstance(model.term, Term) else Term(model.term), universe_identifier=uid if isinstance(uid, UniverseIdentifier) else UniverseIdentifier(uid) if uid else None, vendor=model.vendor, version=model.version, type_=model.type_ if not model.type_ or isinstance(model.type_, RiskModelType) else RiskModelType(model.type_), entitlements=model.entitlements, description=model.description, expected_update_time=dt.datetime.strptime( model.expected_update_time, "%H:%M:%S").time() if model.expected_update_time else None )
[docs] @classmethod def from_many_targets(cls, models: Tuple[RiskModelBuilder, ...]): return [cls.from_target(model) for model in models]
def __str__(self): return self.id def __repr__(self): s = "{}('{}','{}','{}','{}','{}','{}','{}', '{}".format( self.__class__.__name__, self.id, self.name, self.coverage, self.term, self.universe_identifier, self.vendor, self.version, self.type ) if self.universe_size: s += ", universe_size={}".format(self) if self.entitlements: s += ", entitlements={}".format(self) if self.description: s += ", description={}".format(self) if self.expected_update_time: s += ", expected_update_time={}".format(self) s += ")" return s
[docs]class FactorRiskModel(MarqueeRiskModel): """ Factor Risk Model used for calculating asset level factor risk"""
[docs] def __init__(self, id_: str, name: str, coverage: CoverageType, term: Term, universe_identifier: UniverseIdentifier, vendor: str, version: float, universe_size: int = None, entitlements: Union[Dict, Entitlements] = None, description: str = None, expected_update_time: dt.time = None): """ Create new factor risk model object :param id_: risk model id (cannot be changed) :param name: risk model name :param coverage: coverage of risk model asset universe :param term: horizon term :param universe_identifier: identifier used in asset universe upload (cannot be changed) :param vendor: risk model vendor :param version: version of model :param universe_size: total rough expected universe size (rounding up to nearest 1k) :param entitlements: entitlements associated with risk model :param description: risk model description :param expected_update_time: time when risk model daily data is expected to be uploaded :return: FactorRiskModel object """ super().__init__(id_, name, RiskModelType.Factor, vendor, version, coverage, universe_identifier, term, universe_size=universe_size, entitlements=entitlements, description=description, expected_update_time=expected_update_time)
[docs] @classmethod def from_target(cls, model: RiskModelBuilder): uid = model.universe_identifier return FactorRiskModel( model.id, model.name, model.coverage if isinstance(model.coverage, CoverageType) else CoverageType(model.coverage), model.term if isinstance(model.term, Term) else Term(model.term), uid if isinstance(uid, UniverseIdentifier) else UniverseIdentifier(uid) if uid else None, model.vendor, model.version, universe_size=model.universe_size, entitlements=model.entitlements, description=model.description, expected_update_time=dt.datetime.strptime( model.expected_update_time, "%H:%M:%S").time() if model.expected_update_time else None )
[docs] @classmethod def get_many(cls, ids: List[str] = None, terms: List[str] = None, vendors: List[str] = None, names: List[str] = None, coverages: List[str] = None, limit: int = None) -> list: """ Get many factor risk models from Marquee :param ids: list of model identifiers in Marquee :param terms: list of model terms :param vendors: list of model vendors :param names: list of model names :param coverages: list of model coverages :param limit: limit of number of models in response :return: list of Factor Risk Model object """ models = GsRiskModelApi.get_risk_models(ids=ids, terms=terms, vendors=vendors, names=names, coverages=coverages, limit=limit, types=[RiskModelType.Factor.value] ) return cls.from_many_targets(models)
[docs] def get_total_risk(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest(RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get total risk data for existing risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: which format to return the results in :return: total risk for assets requested **Usage** Get total risk data for assets specified in `assets` between `start_date` and `end_date` **Examples** >>> from gs_quant.models.risk_model import FactorRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier, ReturnFormat >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = FactorRiskModel.get("MODEL_ID") >>> total_risk = model.get_total_risk(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, ['GS UN'])) **See also** :func:`get_specific_risk` :func:`get_specific_return` :func:`get_historical_beta` """ results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Total_Risk, Measure.Asset_Universe], limit_factors=False ).get('results') universe = pydash.get(results, '0.assetData.universe', []) total_risk = build_asset_data_map(results, universe, 'totalRisk', {}) if format == ReturnFormat.DATA_FRAME: total_risk = pd.DataFrame(total_risk) return total_risk
[docs] def get_historical_beta(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest(RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get historical beta data for existing risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: which format to return the results in :return: historical beta for assets requested **Usage** Get historical beta data for assets specified in `assets` between `start_date` and `end_date` **Examples** >>> from gs_quant.models.risk_model import MacroRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier, ReturnFormat >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = FactorRiskModel.get("MODEL_ID") >>> historical_beta = model.get_historical_beta(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, ['GS UN'])) **See also** :func:`get_predicted_beta` :func:`get_global_predicted_beta` """ results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Historical_Beta, Measure.Asset_Universe], limit_factors=False ).get('results') universe = pydash.get(results, '0.assetData.universe', []) historical_beta = build_asset_data_map(results, universe, 'historicalBeta', {}) if format == ReturnFormat.DATA_FRAME: historical_beta = pd.DataFrame(historical_beta) return historical_beta
[docs] def get_predicted_beta(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest(RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get predicted beta data for an existing risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: which format to return the results in :return: predicted beta for assets requested **Usage** Get predicted beta data for assets specified in `assets` between `start_date` and `end_date` **Examples** >>> from gs_quant.models.risk_model import MacroRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = MacroRiskModel.get("MODEL_ID") >>> predicted_beta = model.get_predicted_beta(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, ['GS UN'])) **See also** :func:`get_historical_beta` :func:`get_global_predicted_beta` """ results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Predicted_Beta, Measure.Asset_Universe], limit_factors=False ).get('results') universe = pydash.get(results, '0.assetData.universe', []) predicted_beta = build_asset_data_map(results, universe, 'predictedBeta', {}) if format == ReturnFormat.DATA_FRAME: predicted_beta = pd.DataFrame(predicted_beta) return predicted_beta
[docs] def get_global_predicted_beta(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest( RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get global predicted beta data for an existing risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: which format to return the results in :return: global predicted beta for assets requested **Usage** Get global predicted beta for assets specified in `assets` between `start_date` and `end_date` **Examples** >>> from gs_quant.models.risk_model import MacroRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = FactorRiskModel.get("MODEL_ID") >>> global_predicted_beta = model.get_global_predicted_beta(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, ['GS UN'])) **See also** :func:`get_predicted_beta` :func:`get_historical_beta` """ results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Global_Predicted_Beta, Measure.Asset_Universe], limit_factors=False ).get('results') universe = pydash.get(results, '0.assetData.universe', []) global_predicted_beta = build_asset_data_map(results, universe, 'globalPredictedBeta', {}) if format == ReturnFormat.DATA_FRAME: global_predicted_beta = pd.DataFrame(global_predicted_beta) return global_predicted_beta
[docs] def get_daily_return(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest(RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get daily asset total return data :param start_date: Start date for data request :param end_date: End date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: Which format to return the results in :return: Daily asset total return data **Usage** Get daily return data for assets specified in `assets` between `start_date` and `end_date` **Example** >>> from gs_quant.models.risk_model import FactorRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier >>> import datetime as dt >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = FactorRiskModel.get("MODEL_ID") >>> daily_returns = model.get_daily_return(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, ['GS UN'])) **See also** :func:`get_specific_risk` :func:`get_universe_factor_exposure` :func: `get_specific_return` """ results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Daily_Return, Measure.Asset_Universe], limit_factors=False ).get('results') universe = pydash.get(results, '0.assetData.universe', []) daily_return = build_asset_data_map(results, universe, 'dailyReturn', {}) if format == ReturnFormat.DATA_FRAME: daily_return = pd.DataFrame(daily_return) return daily_return
[docs] def get_specific_return(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest(RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get specific return data for existing risk model :param start_date: Start date for data request :param end_date: End date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: Which format to return the results in :return: Specific return data **Usage** Get specific return data for assets specified in `assets` between `start_date` and `end_date` **Example** >>> from gs_quant.models.risk_model import FactorRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier >>> import datetime as dt >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = FactorRiskModel.get("MODEL_ID") >>> specific_returns = model.get_specific_return(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, ['GS UN'])) **See also** :func:`get_specific_risk` :func:`get_universe_factor_exposure` """ results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Specific_Return, Measure.Asset_Universe], limit_factors=False ).get('results') universe = pydash.get(results, '0.assetData.universe', []) specific_return = build_asset_data_map(results, universe, 'specificReturn', {}) if format == ReturnFormat.DATA_FRAME: specific_return = pd.DataFrame(specific_return) return specific_return
[docs] def get_universe_factor_exposure(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest( RiskModelUniverseIdentifierRequest.gsid, []), get_factors_by_name: bool = False, format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get universe factor exposure data for existing risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param get_factors_by_name: return results keyed by factor name instead of ID :param format: which format to return the results in :return: factor exposure for assets requested **Usage** Given a list of assets, return their exposure to factors between start date and end date. **Examples** >>> from gs_quant.models.risk_model import FactorRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> universe = ['GS UN'] >>> model = FactorRiskModel.get("MODEL_ID") >>> universe_exposure = model.get_universe_factor_exposure(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, universe)) **See also** :func:`get_asset_universe` :func:`get_specific_risk` """ return super().get_universe_exposure(start_date, end_date, assets, get_factors_by_name=get_factors_by_name, format=format)
[docs] def get_covariance_matrix(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = None, format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[Dict, pd.DataFrame]: """ Get covariance matrix data for existing risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to limit the covariance matrix by :param format: which format to return the results in :return: covariance matrix of daily factor returns **Usage** Get the covariance matrix of daily factor returns **Examples** >>> from gs_quant.models.risk_model import MacroRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = FactorRiskModel.get("MODEL_ID") >>> covariance_matrix = model.get_covariance_matrix(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, ['GS UN'])) **See also** :func:`get_factor_returns_by_name` :func:`get_factor_returns_by_id` """ limit_factors = True if assets else False measures = [Measure.Covariance_Matrix, Measure.Factor_Name, Measure.Factor_Id] if assets: measures += [Measure.Universe_Factor_Exposure, Measure.Asset_Universe] results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=measures, limit_factors=limit_factors ).get('results') covariance_data = results if format == ReturnFormat.JSON else get_covariance_matrix_dataframe(results) return covariance_data
[docs] def get_estimation_universe_weights(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest( RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[Dict, pd.DataFrame]: """ Get estimation universe data for existing risk model :param start_date: Start date for data request. Must be equal to end_date if universe array in DataAssetsRequest is empty. :param end_date: End date for data request. Must be equal to start_date if universe array in DataAssetsRequest is empty. :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: Which format to return the results in :return: Estimation Universe data in a pandas dataframe or dict **Usage** Get the assets that are in the estimation universe of the model and their weights. **Examples** >>> from gs_quant.models.risk_model import FactorRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> universe = ['GS UN'] >>> model = FactorRiskModel.get("MODEL_ID") >>> estimation_universe_weights = model.get_estimation_universe_weights(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, universe)) **See also** :func:`get_asset_universe` :func:`get_specific_risk` """ results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Estimation_Universe_Weight, Measure.Asset_Universe], limit_factors=False ).get('results') universe = pydash.get(results, '0.assetData.universe', []) estimation_universe_weights = build_asset_data_map(results, universe, 'estimationUniverseWeight', {}) if format == ReturnFormat.DATA_FRAME: estimation_universe_weights = pd.DataFrame(estimation_universe_weights) return estimation_universe_weights
[docs] def get_issuer_specific_covariance(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest( RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[Dict, pd.DataFrame]: """ Get issuer specific covariance data for existing risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: which format to return the results in :return: issuer specific covariance matrix (covariance of assets with the same issuer) **Usage** Get the covariance of assets with the same issuer. **Examples** >>> from gs_quant.models.risk_model import MacroRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = FactorRiskModel.get("MODEL_ID") >>> issuer_specific_covariance = model.get_issuer_specific_covariance(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, ['GS UN'])) **See also** :func:`get_factor_portfolios` """ isc = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Issuer_Specific_Covariance], limit_factors=False ).get('results') isc_data = isc if format == ReturnFormat.JSON else get_isc_dataframe(isc) return isc_data
[docs] def get_factor_portfolios(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest( RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[Dict, pd.DataFrame]: """ Get factor portfolios data for existing risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: which format to return the results in :return: factor portfolios data **Usage** Get the factor portfolios data between `start_date` and `end_date` **Examples** >>> from gs_quant.models.risk_model import MacroRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = FactorRiskModel.get("MODEL_ID") >>> factor_portfolios = model.get_factor_portfolios(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, ['GS UN'])) **See also** :func:`get_issuer_specific_covariance` """ results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Factor_Portfolios], limit_factors=False ).get('results') pfp_data = results if format == ReturnFormat.JSON else build_pfp_data_dataframe(results) return pfp_data
def __repr__(self): s = "{}('{}','{}','{}','{}','{}','{}','{}'".format( self.__class__.__name__, self.id, self.name, self.coverage, self.term, self.universe_identifier, self.vendor, self.version ) if self.universe_size: s += ", universe_size={}".format(self) if self.entitlements: s += ", entitlements={}".format(self) if self.description: s += ", description={}".format(self) if self.expected_update_time: s += ", expected_update_time={}".format(self) s += ")" return s
[docs]class MacroRiskModel(MarqueeRiskModel): """ Macro Risk Model used for sensitivity analysis"""
[docs] def __init__(self, id_: str, name: str, coverage: CoverageType, term: Term, universe_identifier: UniverseIdentifier, vendor: str, version: float, universe_size: int = None, entitlements: Union[Dict, Entitlements] = None, description: str = None, expected_update_time: dt.time = None): """ Create new Macro risk model object :param id_: risk model id (cannot be changed) :param name: risk model name :param coverage: coverage of risk model asset universe :param universe_identifier: identifier used in asset universe upload (cannot be changed) :param vendor: risk model vendor :param version: version of model :param universe_size: total rough expected universe size (rounding up to nearest 1k) :param entitlements: entitlements associated with risk model :param description: risk model description :param expected_update_time: time when risk model daily data is expected to be uploaded :return: MacroRiskModel object """ super().__init__(id_, name, RiskModelType.Macro, vendor, version, coverage, universe_identifier, term, universe_size=universe_size, entitlements=entitlements, description=description, expected_update_time=expected_update_time)
[docs] @classmethod def from_target(cls, model: RiskModelBuilder): uid = model.universe_identifier return MacroRiskModel( model.id, model.name, model.coverage if isinstance(model.coverage, CoverageType) else CoverageType(model.coverage), model.term if isinstance(model.term, Term) else Term(model.term), uid if isinstance(uid, UniverseIdentifier) else UniverseIdentifier(uid) if uid else None, model.vendor, model.version, universe_size=model.universe_size, entitlements=model.entitlements, description=model.description, expected_update_time=dt.datetime.strptime( model.expected_update_time, "%H:%M:%S").time() if model.expected_update_time else None )
[docs] @classmethod def get_many(cls, ids: List[str] = None, terms: List[str] = None, vendors: List[str] = None, names: List[str] = None, coverages: List[str] = None, limit: int = None): """ Get many Macro risk models from Marquee :param ids: list of model identifiers in Marquee :param terms: list of model terms :param vendors: list of model vendors :param names: list of model names :param coverages: list of model coverages :param limit: limit of number of models in response :return: list of Macro Risk Model object """ models = GsRiskModelApi.get_risk_models(ids=ids, terms=terms, vendors=vendors, names=names, coverages=coverages, types=[RiskModelType.Macro.value], limit=limit) return cls.from_many_targets(models)
[docs] def get_universe_sensitivity(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest( RiskModelUniverseIdentifierRequest.gsid, []), factor_type: FactorType = FactorType.Factor, get_factors_by_name: bool = False, format: ReturnFormat = ReturnFormat.DATA_FRAME ) -> Union[List[Dict], pd.DataFrame]: """ Get universe factor or factor category sensitivity data for existing macro risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param factor_type: If factor type is factor, return factor sensitivity. Otherwise, return factor category sensitivity. :param get_factors_by_name: return results keyed by factor name instead of ID :param format: which format to return the results in :return: Factor or Factor Category sensitivity for assets requested **Usage** Given a list of assets, return their sensitivity to macro factors (when the factor_type is `Factor`) or macro factor categories (when the factor_type is Category). **Examples** >>> from gs_quant.models.risk_model import MacroRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = MacroRiskModel.get("MODEL_ID") >>> sensitivity = model.get_universe_sensitivity(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, ['GS UN'])) **See also** :func:`get_r_squared` :func:`factor_standard_deviation` :func:`factor_z_score` """ sensitivity_df = super().get_universe_exposure(start_date, end_date, assets, get_factors_by_name=get_factors_by_name, format=format) \ if factor_type == FactorType.Factor else \ super().get_universe_exposure(start_date, end_date, assets, get_factors_by_name=get_factors_by_name) if factor_type == FactorType.Factor or sensitivity_df.empty: return sensitivity_df factor_data = self.get_factor_data(start_date, end_date) factor_data = factor_data.set_index("name") if get_factors_by_name else factor_data.set_index("identifier") columns = [(factor_data.loc[f, "factorCategory"], f) for f in sensitivity_df.columns.values] \ if get_factors_by_name else \ [(factor_data.loc[f, "factorCategoryId"], f) for f in sensitivity_df.columns.values] sensitivity_df = sensitivity_df.set_axis(pd.MultiIndex.from_tuples(columns), axis=1) factor_categories = list(set(sensitivity_df.columns.get_level_values(0).values)) factor_category_sens_df = pd.concat( [sensitivity_df[factor_category].agg(np.sum, axis=1) .to_frame() .rename(columns={0: factor_category}) for factor_category in factor_categories], axis=1 ) if format == ReturnFormat.JSON: factor_category_sens_df = factor_category_sens_df.to_dict(orient='index') factor_category_sens_dict = {} for key, value in factor_category_sens_df.items(): temp_dict = factor_category_sens_dict.get(key[0], {}) temp_dict[key[1]] = value factor_category_sens_dict[key[0]] = temp_dict return factor_category_sens_dict return factor_category_sens_df
[docs] def get_r_squared(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest(RiskModelUniverseIdentifierRequest.gsid, []), format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get R Squared data for existing macro risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param format: The format to return the results in (Dataframe or Dict) :return: R Squared for assets requested **Usage** Given a list of assets, return the r squared for each asset between `start_date` and `end_date`. **Examples** >>> start = dt.date(2022, 1, 1) >>> end = dt.date(2022, 5, 2) >>> model = MacroRiskModel.get("MODEL_ID") >>> r_squared_df = model.get_r_squared(start, end, DataAssetsRequest(UniverseIdentifier.bbid, ['GS UN'])) To get the data in dict format, specify the return format to JSON >>> r_squared_dict = model.get_r_squared(start, end, ... DataAssetsRequest(RiskModelUniverseIdentifierRequest.bbid, ['GS UN'], ... ReturnFormat.JSON) **See also** :func:`get_fair_value_gap` :func:`factor_standard_deviation` :func:`factor_z_score` """ results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.R_Squared, Measure.Asset_Universe], limit_factors=False ).get('results') universe = pydash.get(results, '0.assetData.universe', []) r_squared = build_asset_data_map(results, universe, 'rSquared', {}) if format == ReturnFormat.DATA_FRAME: r_squared = pd.DataFrame(r_squared) return r_squared
[docs] def get_fair_value_gap(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest(RiskModelUniverseIdentifierRequest.gsid, []), fair_value_gap_unit: Unit = Unit.STANDARD_DEVIATION, format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get fair value gap data for a list of assets between start date and end date :param start_date: The start date for data request. :param end_date: The end date for data request. :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request. :param fair_value_gap_unit: Return the fair value gap value expressed in this unit. The default is standard deviation. :param format: The format to return the data in. The default is pandas Dataframe. :return: Fair Value Gap for the assets requested **Usage** Given a list of assets, return the fair value gap for each asset between `start_date` and `end_date`. The data can be returned as a pandas DataFrame or as a dict. **Examples** Get the fair value gap data in a dataframe format between start and end. >>> from gs_quant.models.risk_model import MacroRiskModel, DataAssetsRequest, \ ... RiskModelUniverseIdentifierRequest as UniverseIdentifier, ReturnFormat >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = MacroRiskModel.get("MODEL_ID") >>> fvg_df = model.get_fair_value_gap(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, ['GS UN'])) To get the data in percentage, specify the fair_value_gap_unit to PERCENT. >>> fvg_df = model.get_fair_value_gap(start_date, end_date, ... DataAssetsRequest(UniverseIdentifier.bbid, ['GS UN']), Unit.PERCENT) **See also** :func:`get_r_squared` :func:`factor_standard_deviation` :func:`factor_z_score` """ results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=[Measure.Fair_Value_Gap_Standard_Deviation, Measure.Asset_Universe] if fair_value_gap_unit == Unit.STANDARD_DEVIATION else [Measure.Fair_Value_Gap_Percent, Measure.Asset_Universe], limit_factors=False ).get('results') universe = pydash.get(results, '0.assetData.universe', []) measure = 'fairValueGapStandardDeviation' if fair_value_gap_unit == Unit.STANDARD_DEVIATION else \ 'fairValueGapPercent' fair_value_gap = build_asset_data_map(results, universe, measure, {}) if format == ReturnFormat.DATA_FRAME: fair_value_gap = pd.DataFrame(fair_value_gap) return fair_value_gap
[docs] def get_factor_standard_deviation(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = None, factors: List[str] = [], factors_by_name: bool = True, format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get factor standard deviation data for existing risk model keyed by name or id :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to limit the factors by :param factors: the factors to get standard deviation for. If empty, the data for all factors is returned :param factors_by_name: whether to identify factors by their name or id. If true, the list of factors must \ be a list of factor names. Otherwise, it should be a list of factor ids :param format: which format to return the results in :return: factor standard deviation **Usage** Get the value of one standard deviation of the factors specified in `factors` **Examples** >>> from gs_quant.models.risk_model import MacroRiskModel >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = MacroRiskModel.get("MODEL_ID") >>> factor_standard_deviation = model.get_factor_standard_deviation(start_date, end_date, ... factors=['factor1', 'factor2']) **See also** :func:`factor_standard_deviation` :func:`factor_z_score` """ if factors: risk_model_factors = self.get_factor_data(start_date=start_date, end_date=end_date, factor_type=FactorType.Factor, format=ReturnFormat.JSON) identifier = 'name' if factors_by_name else 'identifier' factors = validate_factors_exist(factors, risk_model_factors, self.id, identifier) limit_factors = True if assets else False measures = [Measure.Factor_Standard_Deviation, Measure.Factor_Name, Measure.Factor_Id] if assets: measures += [Measure.Universe_Factor_Exposure, Measure.Asset_Universe] results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=measures, limit_factors=limit_factors ).get('results') factor_identifier = 'factorName' if factors_by_name else 'factorId' factor_data = build_factor_data_map(results, factor_identifier, 'factorStandardDeviation', factors=factors) if format == ReturnFormat.DATA_FRAME: factor_data = pd.DataFrame(factor_data) return factor_data
[docs] def get_factor_z_score(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = None, factors: List[str] = [], factors_by_name: bool = True, format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get factor z score data for existing risk model keyed by name or id :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to limit the factors by :param factors: the factors to get z score data for. If empty, the data for all factors is returned :param factors_by_name: whether to identify factors by their name or id. If true, the list of factors must \ be a list of factor names. Otherwise, it should be a list of factor ids :param format: which format to return the results in :return: factor z score **Usage** Get the z score of the factors specified in `factors` **Examples** >>> from gs_quant.models.risk_model import MacroRiskModel >>> import datetime as dt >>> >>> start_date = dt.date(2022, 1, 1) >>> end_date = dt.date(2022, 5, 2) >>> model = MacroRiskModel.get("MODEL_ID") >>> factor_z_score = model.get_factor_z_score(start_date, end_date, factors=['factor1', 'factor2']) **See also** :func:`get_r_squared` :func:`factor_standard_deviation` :func:`factor_z_score` """ if factors: risk_model_factors = self.get_factor_data(start_date=start_date, end_date=end_date, factor_type=FactorType.Factor, format=ReturnFormat.JSON) identifier = 'name' if factors_by_name else 'identifier' factors = validate_factors_exist(factors, risk_model_factors, self.id, identifier) limit_factors = True if assets else False measures = [Measure.Factor_Z_Score, Measure.Factor_Name, Measure.Factor_Id] if assets: measures += [Measure.Universe_Factor_Exposure, Measure.Asset_Universe] results = self.get_data( start_date=start_date, end_date=end_date, assets=assets, measures=measures, limit_factors=limit_factors ).get('results') factor_identifier = 'factorName' if factors_by_name else 'factorId' factor_data = build_factor_data_map(results, factor_identifier, 'factorZScore', factors=factors) if format == ReturnFormat.DATA_FRAME: factor_data = pd.DataFrame(factor_data) return factor_data
def __repr__(self): s = "{}('{}','{}','{}','{}','{}','{}'".format( self.__class__.__name__, self.id, self.name, self.coverage, self.universe_identifier, self.vendor, self.version ) if self.universe_size: s += ", universe_size={}".format(self) if self.entitlements: s += ", entitlements={}".format(self) if self.description: s += ", description={}".format(self) if self.expected_update_time: s += ", expected_update_time={}".format(self) s += ")" return s
[docs]class ThematicRiskModel(MarqueeRiskModel): """ Thematic Risk Model used for calculating exposure to thematic flagship baskets """
[docs] def __init__(self, id_: str, name: str, coverage: CoverageType, term: Term, universe_identifier: UniverseIdentifier, vendor: str, version: float, universe_size: int = None, entitlements: Union[Dict, Entitlements] = None, description: str = None, expected_update_time: dt.time = None): """ Create new Thematic risk model object :param id_: risk model id (cannot be changed) :param name: risk model name :param coverage: coverage of risk model asset universe :param term: horizon term :param universe_identifier: identifier used in asset universe upload (cannot be changed) :param vendor: risk model vendor :param version: version of model :param universe_size: total rough expected universe size (rounding up to nearest 1k) :param entitlements: entitlements associated with risk model :param description: risk model description :param expected_update_time: time when risk model daily data is expected to be uploaded :return: Thematic Risk Model object """ super().__init__(id_, name, RiskModelType.Thematic, vendor, version, coverage, universe_identifier, term, universe_size=universe_size, entitlements=entitlements, description=description, expected_update_time=expected_update_time)
[docs] @classmethod def from_target(cls, model: RiskModelBuilder): uid = model.universe_identifier return ThematicRiskModel( model.id, model.name, model.coverage if isinstance(model.coverage, CoverageType) else CoverageType(model.coverage), model.term if isinstance(model.term, Term) else Term(model.term), uid if isinstance(uid, UniverseIdentifier) else UniverseIdentifier(uid) if uid else None, model.vendor, model.version, universe_size=model.universe_size, entitlements=model.entitlements, description=model.description, expected_update_time=dt.datetime.strptime( model.expected_update_time, "%H:%M:%S").time() if model.expected_update_time else None )
[docs] @classmethod def get_many(cls, ids: List[str] = None, terms: List[str] = None, vendors: List[str] = None, names: List[str] = None, coverages: List[str] = None, limit: int = None): """ Get a Thematic risk model from Marquee :param ids: list of model identifiers in Marquee :param terms: list of model terms :param vendors: list of model vendors :param names: list of model names :param coverages: list of model coverages :param limit: limit of number of models in response :return: Macro Risk Model object """ models = GsRiskModelApi.get_risk_models(ids=ids, terms=terms, vendors=vendors, names=names, coverages=coverages, types=[RiskModelType.Thematic.value], limit=limit) return cls.from_many_targets(models)
[docs] def get_universe_sensitivity(self, start_date: dt.date, end_date: dt.date = None, assets: DataAssetsRequest = DataAssetsRequest(RiskModelUniverseIdentifierRequest.gsid, []), get_factors_by_name: bool = False, format: ReturnFormat = ReturnFormat.DATA_FRAME) -> Union[List[Dict], pd.DataFrame]: """ Get universe sensitivity data for existing thematic risk model :param start_date: start date for data request :param end_date: end date for data request :param assets: DataAssetsRequest object with identifier and list of assets to retrieve for request :param get_factors_by_name: return results keyed by factor name instead of ID :param format: which format to return the results in :return: basket sensitivity for assets requested """ return super().get_universe_exposure(start_date, end_date, assets, get_factors_by_name=get_factors_by_name, format=format)
def __repr__(self): s = "{}('{}','{}','{}','{}','{}','{}'".format( self.__class__.__name__, self.id, self.name, self.coverage, self.universe_identifier, self.vendor, self.version ) if self.universe_size: s += ", universe_size={}".format(self) if self.entitlements: s += ", entitlements={}".format(self) if self.description: s += ", description={}".format(self) if self.expected_update_time: s += ", expected_update_time={}".format(self) s += ")" return s