gs_quant.models.epidemiology.EpidemicModel¶
- class EpidemicModel(model, parameters=None, data=None, initial_conditions=None, fit_method='leastsq', error=None, fit_period=None)[source]¶
Class to perform solutions and parameter-fitting of epidemic models
- __init__(model, parameters=None, data=None, initial_conditions=None, fit_method='leastsq', error=None, fit_period=None)[source]¶
A class to standardize fitting and solving epidemiological models.
- Parameters:
model (
Type[CompartmentalModel]) – the model to use, currently a class in the form of SIR, SEIR aboveparameters (
Optional[tuple]) – tuple, parameters to use for the model, defaults to the output of [model].get_parametersdata (
Optional[array]) – np.array, data that can be used to calibrate the modelinitial_conditions (
Optional[list]) – list, initial conditions for the modelfit_method (
str) – str, the method to use to minimize the (given) error. Available methods are those in the lmfit.minimizer.minimize function. Default is Levenberg-Marquardt least squares minimization.error (
Optional[callable]) – callable, control which residuals (and in what form) to minimize for fitting.fit_period (
Optional[float]) – float, how far back to fit the data, defaults to fitting all data
Methods
__init__(model[, parameters, data, ...])A class to standardize fitting and solving epidemiological models.
fit([time_range, parameters, ...])Fit the model based on data in the form np.array([X1,...,Xn])
residual(parameters, time_range, data)Obtain fit error (to minimize).
solve(time_range, initial_conditions, parameters)Integrate the model ODEs to get a solution.